THE URYSOHN AXIOM AND THE COMPLETELY HAUSDORFF AXIOM IN L-TOPOLOGICAL SPACES
Authors
Abstract:
In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so as to be compatible with pointwise metrics. Some properties and characterizations are also derived
similar resources
the urysohn axiom and the completely hausdorff axiom in l-topological spaces
in this paper, the urysohn and completely hausdorff axioms in general topology are generalized to l-topological spaces so as to be compatible with pointwise metrics. some properties and characterizations are also derived
full textThe Urysohn Axiom and the Completely Hausdorff Axiom in L-topological Spaces
In this paper, the Urysohn and completely Hausdorff axioms in general topology are generalized to L-topological spaces so as to be compatible with pointwise metrics. Some properties and characterizations are also derived.
full textH([lambda])-completely Hausdorff axiom on L-topological spaces
This paper de1nes the new concept of completely Hausdor& axiom of an L-topological space by means of L-continuous mappings from an L-topological space to the re1ned Hutton’s unit L-interval by Wang. Some characterizations of the completely Hausdor& axiom, de1ned in this paper, are given, and many nice properties of this kind of completely Hausdor& axiom are proved. For example, it is hereditary...
full textThe Urysohn, completely Hausdorff and completely regular axioms in $L$-fuzzy topological spaces
In this paper, the Urysohn, completely Hausdorff and completely regular axioms in $L$-topological spaces are generalized to $L$-fuzzy topological spaces. Each $L$-fuzzy topological space can be regarded to be Urysohn, completely Hausdorff and completely regular tosome degree. Some properties of them are investigated. The relations among them and $T_2$ in $L$-fuzzy topological spaces are discussed.
full textThe near SR-compactness axiom in L-topological spaces
A kind of new fuzzy compactness, called near SR-compactness, is de4ned for an arbitrary L-subset and for L a complete DeMorgan algebra. This kind of fuzzy compactness is between Lowen’s strong fuzzy compactness and the second author’s SR-compactness. Characterizations and examples of near SR-compact L-subsets are given, and its topological properties are systematically investigated. c © 2003 El...
full textMetric spaces and the axiom of choice
We shall start with some definitions from topology. First of all, a metric space is a topological space whose topology is determined by a metric. A metric on a topological space X is a function d from X × X to R , the reals, which has the following properties: For all x, y, z ∈ X , (a) d(x, y) ≥ 0, (b) d(x, x) = 0, (c) if d(x, y) = 0, then x = y, (d) d(x, y) = d(y, x), and (e) d(x, y) + d(y, z)...
full textMy Resources
Journal title
volume 7 issue 1
pages 33- 45
publication date 2010-02-05
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023